数学知识:高中数学公式大全(最新最全)
关于目前高中数学公式的话题(最新最全),小编也在网上搜集了一些高中数学公式(最新最全)的相关资料,分享给大家 大家来学习。
更多电子书和学习资料下载地址! 状元 更多电子书、学习资料下载地址! 免费注册、免费中高考复习卷下载、高中学术能力测试资源下载……
扫码加微信公众号免费领取资料
扫码加微信公众号免费领取资料材料
扫描二维码添加微信公众号免费领取资料
更多e -书籍和学习资料下载地址! 状元 更多电子书、学习资料下载地址! 免注册,免费下载中考和高中学术能力测试各学科试卷。 状元元想打造最全的免费高考复习和学业水平考试复习资料。 更多信息请到状元花园下载。 高中数学公式(最全最详细)高中数学公式抛物线:y=ax*+bx+c就是y等于ax的平方加bx加c时a 0开a 0开c= 0时a parabola,抛物线对称轴对于y轴,顶点公式y = a(x+h)* + k是y等于a乘以(x+h)的平方+k -h是x的k 顶点坐标是顶点坐标y,一般用来求抛物线px的最大值和最小值。 表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2, 0)。 由于抛物线的焦点可以在任何半轴上,所以有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py circle:volume=4/3 (pi) (r ^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a, b) 是圆的一般方程 中心坐标 x2+ y2+Dx+Ey+F=0 注:D2 +E2-4F0 (1) 椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长相等 到它的短半轴是半径为 (2πb) 的椭圆的周长加上椭圆的长半轴 (a) 和短半轴 (b) 长度之差的四倍 . (2)椭圆面积的计算公式椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于pi(π)乘以长半轴的长度(a)与 短半轴 (b) 的长度。 上面的椭圆周长和面积公式中虽然没有出现椭圆πT,但这两个公式都是从椭圆πT推导出来的。 常数是实体,公式是有用的。 椭圆体积的计算公式是长半径*短半径*PAI*椭圆高 更多电子书和学习资料下载地址! 更多电子书、学习资料下载地址! 三角函数:二角求和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA) 双角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin( α + 2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+…+sin[α+2π*(n-1)/n]=0 cosα+cos ( α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+…+cos[α+2π*(n-1)/n]=0和sin ^ 2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 四重 角度公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4 * tanA^3)/(1-6*tanA^2+tanA^4) 五倍角公式: sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA* ( 5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4) 六角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*( 2 *inA-1)*(-3+4*sinA^2)) cos6A=((-1+2*cos A^2)*(16*cosA^4-16*cosA^2+1)) tan6A=( -6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^ 2-15*tanA^4+tanA^6) 七倍角公式:sin7A=-(s inA*(56*siA^2-112*sinA^4-7+64*sinA^6)) cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7)) tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6) 八倍角公式: sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1)) cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2) tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8 ) 九倍角公式: 更多电子书、学习资料下载地址!更多电子书、学习资料下载地址!十倍角公式: sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4) ) cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1)) tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^ 4+210*tanA^6-45*tanA^8+tanA^10) · 万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB 某些数列前 n 项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 更多电子书、学习资料下载地址!更多电子书、学习资料下载地址!三角不等式 a+b≤a+b a-b≤a+b a≤b=-b≤a≤b a-b≥a-b -a≤a≤a 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理 判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac0 注:方程有两个不相等的个实根 b2-4ac0 注:方程有共轭复数根 公式分类 公式表达式 圆的标准方程 (x-a)2+(y-b)2=r2 注: (a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0 抛物线py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c*h 正棱锥侧面积 S=1/2c*h 正棱台侧面积 S=1/2(c+c)h 圆台侧面积 S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a 是圆心角的弧度数 r 0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=SL 注:其中,S是直截面面积, L 是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h 图形周长 面积 体积公式 长方形的周长=(长+宽)× 2 正方形的周长=边长× 4 长方形的面积=长× 宽 正方形的面积=边长× 边长 三角形的面积 已知三角形底 a,高 h,则 S=ah/2 已知三角形三边 a,b,c,半周长 p,则 S= √[p(p - a)(p - b)(p - c)] (海伦公式) (p=(a+b+c)/2) 和: (a+b+c)*(a+b-c)*1/4 已知三角形两边 a,b,这两边夹角 C,则 S=absinC/2 设三角形三边分别为 a、b、c,内切圆半径为 r 则三角形面积=(a+b+c)r/2 设三角形三边分别为 a、b、c,外接圆半径为 r 则三角形面积=abc/4r 已知三角形三边 a、 c,则 S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦 b、 九韶) ab1 S△=1/2 * c d 1 更多电子书、学习资料下载地址!更多电子书、学习资料下载地址!【 a b 1 c d 1 为三阶行列式,此三角形 ABC 在平面直角坐标系内 A(a,b),B(c,d), C(e,f),这里 ABC ef1 选区取最好按逆时针顺序从右上角开始取, 因为这样取得出的结果一般都为正值, 如果 不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面 积的大小! 】 秦九韶三角形中线面积公式! S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3 其中 Ma,Mb,Mc 为三角形的中线长。 平行四边形的面积=底× 高 梯形的面积=(上底+下底)× 2 高÷ 直径=半径× 半径=直径÷ 2 2 圆的周长=圆周率× 直径= 圆周率× 半径× 2 圆的面积=圆周率× 半径× 半径 长方体的表面积= (长× 宽+长× 高+宽× 高)× 2 长方体的体积 =长× 高 宽× 正方体的表面积=棱长× 棱长× 6 正方体的体积=棱长× 棱长× 棱长 圆柱的侧面积=底面圆的周长× 高 圆柱的表面积=上下底面面积+侧面积 圆柱的体积=底面积× 高 圆锥的体积=底面积× 3 高÷ 长方体(正方体、圆柱体) 的体积=底面积× 高 平面图形 名称 符号 周长 C 和面积 S 正方形 a—边长 C=4a S=a2 长方形 a 和 b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长 h-a 边上的高 s-周长的一半 更多电子书、学习资料下载地址!更多电子书、学习资料下载地址!-内角 其中 s=(a+b+c)/2 S=ah/2 =ab/2?sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 1 过两点有且只有一条直线 两点之间线 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线 直线外一点与直线上各点连接的所有线 平行公理 经过直线外一点,有且只有一条直线 如果两条直线都和第三条直线平行,这两条直线 同位角相等,两直线 内错角相等,两直线 同旁内角互补,两直线两直线 两直线 两直线 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等 24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(sss) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 更多电子书、学习资料下载地址!更多电子书、学习资料下载地址!推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等 (等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60° 的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30° 那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线 两个图形关于某直线对称, 如果它们的对应线段或延长线相交, 那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这 条直线勾股定理 直角三角形两直角边 a、b 的平方和、等于斜边 c 的平方,即 a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长 a、b、c 有关系 a^2+b^2=c^2 ,那么这个三 角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n 边形的内角的和等于(n-2)× 180° 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线 平行四边形的对角线 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线菱形面积=对角线乘积的一半,即 s=(a× b)÷ 2 更多电子书、学习资料下载地址!更多电子书、学习资料下载地址!菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形, 对称点连线都经过对称中心, 并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个 图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直 线 经过梯形一腰的中点与底平行的直线 经过三角形一边的中点与另一边平行的直线 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷ 2 s=l× h 83 (1)比例的基本性质 如果 a!b=c!d,那么 ad=bc 如果 ad=bc,那么 a!b=c!d 84 (2)合比性质 如果 a/b=c/d,那么(a± b)/b=(c± d)/d 85 (3)等比性质 如果 a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/ (b+d+…+n)=a/b 86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线 推论 平行于三角形一边的直线截其他两边(或两边的延长线) ,所得的对应线 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那 么这条直线平行于三角形的第三边 89 平行于三角形的一边,
高中数学公式大全并且和其他两边相交的直线,所截得的三角形的三边与原三 角形三边对应成比例 90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角 形与原三角形相似 91 相似三角形判定定理1 两角对应相等,两三角形相似(asa) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas) 94 判定定理3 三边对应成比例,两三角形相似(sss) 更多电子书、学习资料下载地址!更多电子书、学习资料下载地址!定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条 直角边对应成比例,那么这两个直角三角形相似 96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线 相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切 值 101圆是定点的距离等于定长的点的集合 102圆的内部可以看作是圆心的距离小于半径的点的集合 103圆的外部可以看作是圆心的距离大于半径的点的集合 104同圆或等圆的半径相等 105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线到已知角的两边距离相等的点的轨迹,是这个角的平分线到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线定理 不在同一直线上的三点确定一个圆。 110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1 ① 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ② 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112推论2 圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形 114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦 心距相等 115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组 量相等那么它们所对应的其余各组量都相等 116定理 一条弧所对的圆周角等于它所对的圆心角的一半 117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相 等 118推论2 半圆(或直径)所对的圆周角是直角;90° 的圆周角所 对的弦是直径 119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121① 直线 l 和⊙ 相交 d<r o ② 直线 l 和⊙ 相切 d=r o 更多电子书、学习资料下载地址!更多电子书、学习资料下载地址!③ 直线 l 和⊙ 相离 d>r o 122切线的判定定理 经过半径的外端并且垂直于这条半径的直线切线的性质定理 圆的切线垂直于经过切点的半径 124推论1 经过圆心且垂直于切线 经过切点且垂直于切线切线长定理 从圆外一点引圆的两条切线, 它们的切线长相等, 圆心和这一点的连线 平分两条切线圆的外切四边形的两组对边的和相等 128弦切角定理 弦切角等于它所夹的弧对的圆周角 129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130相交弦定理 圆内的两条相交弦,被交点分成的两条线推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线推论 从圆外一点引圆的两条割线, 这一点到每条割线与圆的交点的两条线如果两个圆相切,那么切点一定在连心线① 两圆外离 d>r+r ② 两圆外切 d=r+r ③ 两圆相交 r-r<d<r+r(r>r) ④ 两圆内切 d=r-r(r>r) ⑤ 两圆内含 d<r-r(r>r) 136定理 相交两圆的连心线垂直平分两圆的公共弦 137定理 把圆分成 n(n≥3)! ⑴ 依次连结各分点所得的多边形是这个圆的内接正 n 边形 ⑵ 经过各分点作圆的切线, 以相邻切线的交点为顶点的多边形是这个圆的外切正 n 边形 138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139正 n 边形的每个内角都等于(n-2)× 180° /n 140定理 正 n 边形的半径和边心距把正 n 边形分成2n 个全等的直角三角形 141正 n 边形的面积 sn=pnrn/2 p 表示正 n 边形的周长 142正三角形面积√3a/4 a 表示边长 143如果在一个顶点周围有 k 个正 n 边形的角,由于这些角的和应为 360° ,因此 k× (n-2)180° /n=360° 化为(n-2)(k-2)=4 144弧长计算公式:l=nπr/180 145扇形面积公式:s 扇形=nπr2/360=lr/2 146内公切线长= d-(r-r) 外公切线长= d-(r+r) 147等腰三角形的两个底脚相等 148等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合 更多电子书、学习资料下载地址!更多电子书、学习资料下载地址!如果一个三角形的两个角相等,那么这两个角所对的边也相等 150三条边都相等的三角形叫做等边三角形 另一部分! 1 过两点有且只有一条直线 两点之间线 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线 直线外一点与直线上各点连接的所有线 平行公理 经过直线外一点,有且只有一条直线 如果两条直线都和第三条直线平行,这两条直线 同位角相等,两直线 内错角相等,两直线 同旁内角互补,两直线两直线 两直线 两直线 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等 24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(sss) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 更多电子书、学习资料下载地址!更多电子书、学习资料下载地址!等腰三角形的判定定理 如果一个三角形有两个角相等, 那么这两个角所对的边也相 等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60° 的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30° 那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线 两个图形关于某直线对称, 如果它们的对应线段或延长线相交, 那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这 条直线勾股定理 直角三角形两直角边 a、b 的平方和、等于斜边 c 的平方,即 a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长 a、b、c 有关系 a^2+b^2=c^2 ,那么这个三 角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n 边形的内角的和等于(n-2)× 180° 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线 平行四边形的对角线 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线菱形面积=对角线乘积的一半,即 s=(a× b)÷ 2 67菱形判定定理1 四边都相等的四边形是菱形 更多电子书、学习资料下载地址!更多电子书、学习资料下载地址!菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形, 对称点连线都经过对称中心, 并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个 图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直 线 经过梯形一腰的中点与底平行的直线 经过三角形一边的中点与另一边平行的直线 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷ 2 s=l× h 83 (1)比例的基本性质 如果 a!b=c!d,那么 ad=bc 如果 ad=bc,那么 a!b=c!d 84 (2)合比性质 如果 a/b=c/d,那么(a± b)/b=(c± d)/d 85 (3)等比性质 如果 a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/ (b+d+…+n)=a/b 86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线 推论 平行于三角形一边的直线截其他两边(或两边的延长线) ,所得的对应线 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那 么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三 角形三边对应成比例 90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角 形与原三角形相似 91 相似三角形判定定理1 两角对应相等,两三角形相似(asa) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas) 94 判定定理3 三边对应成比例,两三角形相似(sss) 95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条 更多电子书、学习资料下载地址!更多电子书、学习资料下载地址!直角边对应成比例,那么这两个直角三角形相似 96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线 相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切 值 101圆是定点的距离等于定长的点的集合 102圆的内部可以看作是圆心的距离小于半径的点的集合 103圆的外部可以看作是圆心的距离大于半径的点的集合 104同圆或等圆的半径相等 105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线到已知角的两边距离相等的点的轨迹,是这个角的平分线到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线定理 不在同一直线上的三点确定一个圆。 110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1 ① 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ② 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112推论2 圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形 114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦 心距相等 115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组 量相等那么它们所对应的其余各组量都相等 116定理 一条弧所对的圆周角等于它所对的圆心角的一半 117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相 等 118推论2 半圆(或直径)所对的圆周角是直角;90° 的圆周角所 对的弦是直径 119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121① 直线 l 和⊙ 相交 d<r o ② 直线 l 和⊙ 相切 d=r o ③ 直线 l 和⊙ 相离 d>r o 更多电子书、学习资料下载地址!更多电子书、学习资料下载地址!切线的判定定理 经过半径的外端并且垂直于这条半径的直线切线的性质定理 圆的切线垂直于经过切点的半径 124推论1 经过圆心且垂直于切线 经过切点且垂直于切线切线长定理 从圆外一点引圆的两条切线, 它们的切线长相等, 圆心和这一点的连线 平分两条切线圆的外切四边形的两组对边的和相等 128弦切角定理 弦切角等于它所夹的弧对的圆周角 129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130相交弦定理 圆内的两条相交弦,被交点分成的两条线推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线推论 从圆外一点引圆的两条割线, 这一点到每条割线与圆的交点的两条线如果两个圆相切,那么切点一定在连心线① 两圆外离 d>r+r ② 两圆外切 d=r+r ③ 两圆相交 r-r<d<r+r(r>r) ④ 两圆内切 d=r-r(r>r) ⑤ 两圆内含 d<r-r(r>r) 136定理 相交两圆的连心线垂直平分两圆的公共弦 137定理 把圆分成 n(n≥3)! ⑴ 依次连结各分点所得的多边形是这个圆的内接正 n 边形 ⑵ 经过各分点作圆的切线, 以相邻切线的交点为顶点的多边形是这个圆的外切正 n 边形 138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139正 n 边形的每个内角都等于(n-2)× 180° /n 140定理 正 n 边形的半径和边心距把正 n 边形分成2n 个全等的直角三角形 141正 n 边形的面积 sn=pnrn/2 p 表示正 n 边形的周长 142正三角形面积√3a/4 a 表示边长 143如果在一个顶点周围有 k 个正 n 边形的角,由于这些角的和应为 360° ,因此 k× (n-2)180° /n=360° 化为(n-2)(k-2)=4 144弧长计算公式:l=nπr/180 145扇形面积公式:s 扇形=nπr2/360=lr/2 146内公切线长= d-(r-r) 外公切线长= d-(r+r) 147等腰三角形的两个底脚相等 148等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合 149如果一个三角形的两个角相等,那么这两个角所对的边也相等 更多电子书、学习资料下载地址!更多电子书、学习资料下载地址!三条边都相等的三角形叫做等边三角 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 a+b≤a+b a-b≤a+b a≤b=-b≤a≤b a-b≥a-b -a≤a≤a 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac0 注:方程有两个不等的实根 b2-4ac0 注:方程没有实根,有共轭复数根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前 n 项和 更多电子书、学习资料下载地址!更多电子书、学习资料下载地址!…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角 圆的标准方程 (x-a)2+(y-b)2=r2 注: (a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0 抛物线py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c*h 正棱锥侧面积 S=1/2c*h 正棱台侧面积 S=1/2(c+c)h 圆台侧面积 S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a 是圆心角的弧度数 r 0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=SL 注:其中,S是直截面面积, L 是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h 更多电子书、学习资料下载地址!
拓展阅读:
127条高中数学常用解题公式,提分必备,果断收藏
127条高中数学常用解题公式,提分必备,果断收藏!
查看更多初中、高中知识,关注我哦,每天都更新!
数学大师